Piezoelectric-transducer-based optoelectronic frequency synchronizer for control of pulse delay in a femtosecond passively mode-locked Ti:sapphire laser.

نویسندگان

  • Gong-Ru Un
  • Yung-Cheng Chang
  • Tze-An Liu
  • Ci-Ling Pan
چکیده

We propose a piezoelectric transducer-(PZT-) based optoelectronic frequency synchronizer to control simultaneously change in the repetition rate, the relative pulse delay, and the phase noise of a passively mode-locked femtosecond Ti:sapphire laser with an intracavity saturable Bragg reflector absorber with respect to an electronic frequency reference. An optoelectronic phase-locked-loop-based PZT feedback controller with a proportional, integral, and differential (PID) circuit and a tunable voltage regulator is designed to achieve frequency synchronization, phase-noise suppression, and delay-time tuning. When the controlling voltage is tuned from -2.6 to 2.6 V, the maximum pulse-delay range, tuning slope, and tuning resolution of the laser pulse-train are 11.3 ns, 2.3 ps/mV, and 1.2 ps, respectively. Setting the gain constant of the PID circuit at 10 or larger causes the delay-time tuning function to be linearly proportional to the controlling voltage. In the delay-time tuning mode the uncorrelated single-side-band phase-noise density of the frequency-synchronized laser is approximately -120 dBc/Hz at an offset frequency of 5 kHz, which is only 7 dBc/Hz higher than that of the electrical frequency reference. The proposed system also supports linear,continuous switching,and programmable control of the delay time of Ti:sapphire laser pulses when they are frequency synchronized to external reference clocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All Solid-State Passively Mode-Locked Ultrafast Lasers Based on Nd, Yb, and Cr Doped Media

Mode-locking technique is a widely used method for generating ultrashort laser pulses. The mode-locked laser output is a sequence of equally spaced laser pulses. The pulse width is limited by the spectral range of the gain medium and inversely related to the bandwidth of the laser emission. Compared with the active mode-locking technique, passively modelocked laser with saturable absorber is ab...

متن کامل

Passively mode-locked 10 GHz femtosecond Ti:sapphire laser.

We report a mode-locked Ti:sapphire femtosecond laser emitting 42 fs pulses at a 10 GHz repetition rate. When operated with a spectrally integrated average power greater than 1 W, the associated femtosecond laser frequency comb contains approximately 500 modes, each with power exceeding 1 mW. Spectral broadening in nonlinear microstructured fiber yields comb elements with individual powers grea...

متن کامل

Starting dynamics of a cw passively mode-locked picosecond Ti:sapphire/DDI laser.

We show that, for a cw passively mode-locked picosecond Ti:sapphire/DDI laser, the first autocorrelation trace with negligible cw background occurs at a delay time of 20 mu;s, or 1600 round trips from the first relaxationoscillation peak. The trace suggests that the pulse consists of a primary pulse as short as 4.4 ps and of small secondary pulses that form a much wider pedestal of the trace, e...

متن کامل

Control of relative carrier-envelope phase slip in femtosecond Ti:sapphire and Cr:forsterite lasers.

We were able to control relative carrier-envelope phase slip among mode-locked Ti:sapphire and Cr:forsterite lasers by employing electronic feedback. The pulse timings of these lasers were passively synchronized with our crossing-beam technique. Since the optical-frequency ratio of Ti:sapphire and Cr:forsterite is approximately 3:2, we can observe the phase relation by superimposing the third h...

متن کامل

Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators

A complete noise characterization of sub-10-fs Ti:sapphire oscillators in terms of pulse energy fluctuations, timing jitter, and the coupling between these two noise components is presented for the first time. The noise performance of a self-mode-locked mirror-dispersion-controlled (MDC) oscillator pumped by an Ar–ion laser and, alternatively, a diodepumped laser (Millennia, Spectra Physics Inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 42 15  شماره 

صفحات  -

تاریخ انتشار 2003